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Abstract 

In many animals, males have one X and females have two X chromosomes. The difference in X 
chromosome dosage between the two sexes is compensated by mechanisms that regulate X 
chromosome transcription. Recent advances in genomic techniques have provided new insights 
into the molecular mechanisms of X chromosome dosage compensation. In this review, I sum-
marize our current understanding of dosage imbalance in general, and then review the molecular 
mechanisms of X chromosome dosage compensation with an emphasis on the parallels and dif-
ferences between the three well-studied model systems, M. musculus, D. melanogaster and C. el-
egans. 
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Introduction 
Maintenance of correct chromosome dosage is 

important for development and fitness in many spe-
cies. Although X chromosome harbors many genes 
that are important for both sexes, males contain a sin-
gle X and females contain two X chromosomes. To 
compensate for X chromosome dosage difference 
between sexes, different mechanisms have evolved to 
equalize X-linked transcript levels in males and fe-
males. Recent genomic research into the mechanisms 
of X chromosome dosage compensation in three 
model organisms, M. musculus (mouse), D. melano-
gaster (fly) and C. elegans (worm) suggest that alt-
hough these animals use different strategies, there are 
considerable parallels in the molecular mechanisms 
that accomplish X chromosome dosage compensation. 
Below, first I discuss chromosome and gene dosage in 
general, and then review different mechanisms of 
dosage compensation while highlighting the similari-
ties and differences between the molecular mecha-
nisms that regulate X chromosome transcription in 
mouse, fly and worm. 

Why chromosome dosage matters 
‘Dosage’ of a chromosome (or a gene) refers to its 

genomic copy number. Polyploidies refer to an in-
crease in the dosage of all chromosomes, and are well 
tolerated. Aneuploidies refer to a change in the dos-
age of one chromosome with respect to the rest of the 
genome, and are generally detrimental to the organ-
ism (reviewed in [1] and [2]). Partial aneuploidies, due 
to duplication or deletion of a chromosomal segment, 
can also be harmful. In some cases, changes in the 
copy number of a single gene cause problems (e.g. 
haploinsufficiency). Thus, maintenance of correct 
gene dosage at multiple scales (single genes to whole 
chromosomes) is important for an organism's fitness.  

Effect of single gene dosage  
In general, mRNA and protein levels are directly 

proportional to gene dosage, as observed in yeast [3, 
4], arabidopsis [5], flies [6], mouse [7-9] and humans 
[10-12]. In fact, altering a gene’s copy number is one 
mechanism of gene regulation. For example in bacte-
ria, antibiotic treatment leads to amplification of 
genes that increase competence for acquisition of an-
tibiotic resistance genes [13]. In yeast, amplification of 
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genes that are important for nitrogen transport occurs 
under the selection of nitrogen starvation [14]. In 
multicellular organisms such as flies, gene amplifica-
tion in specialized tissues is part of normal develop-
ment (reviewed in [15]).  

Deviations from normal gene dosage can nega-
tively affect an organism’s fitness. A classic example is 
the effect of increased beta-tubulin gene dosage on 
microtubule formation in yeast [16]. Correct dosage of 
the transcription factor Bicoid is important for proper 
body patterning and development in flies [17]. In 
humans, changes in individual gene dosage have 
been associated with many diseases (reviewed in [18, 
19]). For instance, duplication of vasoactive intestinal 
peptide receptor gene VIPR2 is associated with 
schizophrenia [20]; increased copy number of be-
ta-defensin antimicrobial peptides correlates with risk 
for psoriasis [21]; and copy number variation of the 
MIR17HG gene (a micro RNAi cluster) is implicated 
in developmental defects [22]. It is unknown what 
percentage of genes in a genome is actually sensitive 
to increased dosage.  

In a diploid genome, decrease in the copy num-
ber of a gene can also have negative effects. Such 
genes are called “haploinsufficient” and require the 
presence of two wild type copies for full function. A 
systematic screen in yeast indicated that, under opti-
mal culture conditions, ~3% of 6,000 yeast genes cause 
growth defect when present in single copy [23]. This is 
likely an underestimation, since many genes may be 
haploinsufficient in conditions that are not tested. 
Indeed, a study that assessed genome instability re-
ported additional haploinsufficient genes [24]. Hap-
loinsufficient genes are enriched in genome ontology 
categories relating to transcription and transcript 
processing, protein folding, protein transport, and 
ribosome biogenesis [23]. In humans, haploinsuffi-
ciency of tumor suppressors are linked to cancers (re-
viewed in [25]). Having a single copy of a tumor 
suppressor not only reduces the dosage of the tumor 
suppressor, but also predisposes the organism to re-
cessive mutations [26]. For example, single copy of 
BRCA1 gene leads to reduced levels of BRCA1 protein 
which causes problems in DNA repair [27], and leads 
to increased susceptibility to mutations that can 
eliminate the remaining copy (reviewed in [28]). 

Effect of multiple genes’ dosage  
Duplication or deletion of small chromosomal 

regions lead to copy number variations (CNVs), and 
change the dosage of single or multiple genes (Figure 
1A). Some CNVs are associated with diseases, in par-
ticular neurological ones (reviewed in [29]). Duplica-
tion or deletion of larger chromosomal segments re-

sult in partial aneuploidies. Systematic analyses of 
partial aneuploidies in flies [30] and yeast [3] have 
shown a positive correlation between the size of the 
affected chromosomal segment and its influence. This 
result suggests that a change in copy number of mul-
tiple genes has a cumulative effect on the organism. 

While CNVs and partial aneuploidies are fairly 
pervasive in a population, aneuploidies of whole 
chromosomes are often lethal in animals (reviewed in 
[2, 31]). In organisms that were studied, monosomy in 
a diploid organism (2n-1) is almost always lethal (re-
viewed in [32]). In D. melanogaster, monosomy of 
chromosome 4 is tolerated because this chromosome 
is small, heterochromatic, and contains few genes. In 
general, trisomy is better tolerated than monosomy. In 
humans, trisomy of 21 is viable and causes Down 
syndrome. Down syndrome phenotypes are thought 
to be caused by the cumulative effect of increased 
chromosome 21 gene dosage, however the entirety of 
the genes responsible for the phenotypes remain un-
clear (reviewed in [33], and [34]). Overall, the pheno-
type of partial and full aneuploidies and CNVs de-
pend on the number and the types of genes that it 
contains. 

In addition to causing problems based on the 
function of individual genes, in many species com-
mon stress pathways are activated as a general re-
sponse to aneuploidy [3, 35]. In yeast, trisomy of sev-
eral different chromosomes causes proteotoxic stress 
due to increased pressure on the protein degradation 
pathways to eliminate the extra proteins [11, 36]. The 
observation that aneuploidies trigger common re-
sponse pathways may contribute to the difficulty of 
identifying those individual genes whose altered 
dosage can explain all Down syndrome phenotypes 
[37, 38]. 

While detrimental for development, aneuploidy 
is a hallmark of cancer cells (reviewed in [39]). There 
are several mechanisms by which cancer cells may 
tolerate aneuploidy (reviewed in [1]). Briefly, aneu-
ploidy may not be detrimental to the proliferation of 
individual somatic cells compared to development of 
a whole organism. In addition, cancer cells often 
harbor decreased dosage of tumor suppressors genes 
(e.g. pRb and p53) and increased dosage of oncogenes 
(e.g. myc). Thus, gene dosage may act as a selection 
mechanism for those cancer cells with a growth ad-
vantage.  

Monosomy of the X and the evolution of 
X chromosome dosage compensation  

The X chromosome presents a natural case of 
aneuploidy in males. Males contain a single X chro-
mosome and two copies of each autosome (XY, AA). 
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In contrast, females contain a full set of chromosomes 
(XX, AA) (Figure 1B). In mammals, Y chromosome 
contains few genes, thus X chromosome is essentially 
monosomic in males. X is certainly monosomic in the 
case of C. elegans, where males do not contain any Y 
chromosome (XO). How is monosomy of the X toler-
ated in males?  

This question should be considered in the con-
text of X chromosome evolution. X and Y chromo-
somes evolved from a pair of autosomes by a series of 
events that linked a sex determination locus to one sex 
by suppressing recombination between the two hom-
ologs (Figure 2A) (reviewed in [40, 41]). Lack of re-
combination is thought to result in Y chromosome 
degeneration, leaving most genes on the X chromo-
some in single copy in males. Susumu Ohno hypoth-
esized that potential haploinsufficiencies unveiled by 
male monosomy were counteracted by increased ex-
pression from the single X chromosome (Figure 3).  

In D. melanogaster, transcription from the X 
chromosome in XY males is upregulated approxi-
mately two-fold, solving the potential haploinsuffi-
ciency of X-linked genes in males (Figure 3). In case of 
D. melanogaster, X-upregulation is male-specific and is 
accomplished by a well-defined dosage compensation 
complex. In mammals and C. elegans, it was hypothe-
sized that upregulation of X-linked genes was not 
male-specific and, instead occurred in both sexes. This 
solved the problem of X monosomy in males, but in-
creased X expression in females above autosomal lev-
els. To compensate for this, female-specific dosage 
compensation mechanisms have evolved (Figure 3). 
In mammals, female-specific dosage compensation 
transcriptionally silences one of the X chromosomes 
(X inactivation). In worms, hermaphrodite-specific 
dosage compensation represses both X chromosomes 
in XX hermaphrodites by two-fold.  

 
 

 
Figure 1. Genomic changes that lead to dosage differences. A) Duplication or deletion of different sizes of chromosomal segments are depicted. B) In a 
diploid species with X chromosomes, males contain a single X chromosome compared to two copies of each autosome. In species where Y chromosome 
does not contain many X-linked gene alleles (e.g. human), or in species where Y chromosome is nonexistent (e.g. C. elegans), X is monosomic in males.  
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Figure 2. Evolution of the X chromosomes, and Ohno’s hypothesis. A) It is hypothesized that the sex chromosomes evolved by formation of a sex locus on the 
Y chromosome followed by suppressed recombination around this locus. With time, Y chromosome slowly degenerated. B) Upper panel: Ohno hy-
pothesized that due to Y chromosome degeneration, the remaining alleles on the X chromosome became potentially haploinsufficient. To compensate for 
this, the alleles on the X chromosome were transcriptionally upregulated. Lower panel: It was also hypothesized that the upregulation of X alleles were not 
limited to males, and also occurred in females. This caused a potential overtranscription of the X-linked genes in females, therefore female-specific 
downregulation occurred. C) To test if X-upregulation occurred, one should compare ancestral (autosomal) and present level of X-linked gene expression. 
Since this is not possible, assuming that the function and expression of 1:1 orthologs are conserved, one can compare expression of 1:1 orthologs that are 
differentially located on X or autosomes. Recent studies on Ohno’s hypothesis suggest that X-uprgeulation is only one of the several mechanisms of dealing 
with potential X haploinsufficieny, and not all genes were upregulated (see text).  
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Figure 3. X chromosome dosage compensation strategies in mammals, flies and worms. In flies, a male-specific dosage compensation complex increases X 
chromosome transcription in males, compensating both for potential monosomy of the X with respect to autosomes, and for X chromosome dosage 
difference between XY males and XX females. In mammals and in worms, X was hypothesized to be upregulated in males to counteract potential X 
monosomy in XO males. In females, upregulation of the X was counteracted by female-specific dosage compensation mechanisms. In mammals, X inac-
tivation silences one of the X chromosomes in XX females to equalize X dosage between XY males and XX females. In worms both X chromosomes are 
downregulated by a factor of two in hermaphrodites to equalize X chromosome dosage between XX hermaphrodites and XO males. Note that 
X-upregulation did not apply to all genes (see Ohno’s hypothesis section in the text). 

 
Ohno’s hypothesis has received renewed atten-

tion in the past few years (reviewed in [42]). Evidence 
for X upregulation in mouse and C. elegans initially 
came from the observation that in males, the average 
level of transcripts from the single X chromosome and 
the two-copy autosomes are similar [43]. In addition, 
X transcript levels increase to above autosomal levels 
in the absence of female-specific dosage compensation 
in mouse [44] and C. elegans [45]. Also in support of 
X-upregulation in mice, the single X chromosome in 
males and the active X chromosome in females have 
higher RNA Pol II recruitment to promoters com-
pared to autosomes [46, 47]. Comparison of overall 
transcription from the X and autosomes is problem-
atic, because X chromosome and autosomal gene 
content differs (reviewed in [48, 49]). Therefore, to test 
Ohno’s hypothesis, ideally one should compare ex-
pression levels of the ancestral and current X-linked 

genes. Since this is not possible, expression of an 
X-linked gene in one species may be compared to a 
one-to-one ortholog that resides on an autosome in 
another species (Figure 2C). Using this approach, a 
recent study found that the X chromosome is largely 
not upregulated in mice and humans [50]. A similar 
conclusion was reached for the C. elegans X chromo-
some [51]. 

How can we reconcile different lines of evidence 
for support and refusal of Ohno’s hypothesis? It ap-
pears that X-upregulation did not happen across all 
the genes on the X chromosome. In mammals, dosage 
sensitive genes, such as those that belong to mul-
ti-subunit protein complexes were upregulated com-
pared to dosage insensitive genes [52]. This suggests 
that a subset of X-linked genes is upregulated. In 
humans, an alternative way to deal with decreased 
dosage of an X-linked gene may have involved 
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downregulation of autosomal genes that are within 
the same protein-protein interaction network [50]. In 
C. elegans, orhologs of yeast haploinsufficient genes 
are depleted from the X chromosome [51], suggesting 
that another way to solve potential haploinsufficiency 
is to move a dosage sensitive gene to an autosome. 
Therefore, Ohno’s hypothesis of X-upregulation is one 
of many different mechanisms that counteracted the 
potential haploinsufficiency of individual X-linked 
genes in males.  

Mechanisms of sex-specific X chromo-
some dosage compensation  

The molecular mechanisms of X chromosome 
dosage compensation are studied mostly in the model 
organisms C. elegans, D. melanogaster, and Mus mus-
culus. Although the problem of X chromosome dosage 
is the same in each of the three model organisms, 
molecular mechanisms of dosage compensation are 
different (Figure 3). In mammals, X inactivation ma-
chinery transcriptionally silences one of the X chro-
mosomes in XX females. In flies, the male specific 
lethal (MSL) complex increases transcription from the 
single X chromosome by two-fold in XY males. In 
worms, the dosage compensation complex (DCC) 
halves transcription from both X chromosomes in XX 
hermaphrodites.  

In recent years, research on the molecular 
mechanisms of the three dosage compensation sys-
tems revealed significant parallels in how dosage 
compensation machineries target the X chromosome, 
how they spread in cis, and how they regulate chro-
matin structure and transcription. Insights into these 
chromosome-wide processes were afforded by the 
genomic techniques that measure expression, binding 
and chromatin structure across the X chromosome. 
Below, I will discuss the three common themes in X 
chromosome dosage compensation: recruitment, 
spreading and regulation of chromatin structure.  

Common themes: Recruitment of the 
dosage compensation machinery to the X 
chromosome 
Initiation of X inactivation in mammals 

X inactivation is mostly studied in placental 
mammals including mouse and human. Of the other 
two mammalian lineages, monotremes (e.g. platypus) 
do not have extensive X inactivation [50, 53, 54], and 
marsupials (e.g. kangaroo) show paternally imprinted 
X inactivation [50, 55-60]. In mice and humans, the 
mechanisms of X inactivation are generally conserved 
with a few notable differences. In mice, the paternal X 

chromosome is inactivated in the early embryo, and 
remains inactivated for the rest of embryogenesis in 
extraembryonic tissues such as the placenta [61-63]. In 
the inner cell mass of the mouse blastocyst, which 
includes cells that give rise to the embryo proper, the 
paternal X chromosome is reactivated and then either 
maternal or paternal X chromosome is randomly 
chosen for inactivation (random X inactivation) [64, 
65]. In humans, paternal and maternal X chromo-
somes are both active until random X inactivation 
occurs in late blastocyst stage ([66], reviewed in [67]).  

In mammals, random X inactivation targets one 
of the two X chromosomes. This is accomplished by 
the mono allelic transcription of a long non-coding 
RNA named Xist (X-inactive specific transcript) (re-
viewed in [68]). Xist is transcribed from a ~500 kb 
locus on the X chromosome, called the X inactivation 
center (Xic) (Figure 4A). Regulatory steps that lead to 
mono allelic transcription of Xist include other 
noncoding RNAs from Xic (reviewed in [69, 70]). 
Sex-specificity and randomness of Xist transcription 
are thought to be mediated by communication be-
tween the two Xic loci on the two homologs [71-73]. 
Deletion of the Xist locus eliminates X inactivation [74, 
75], and insertion of the Xist locus to an autosomal site 
leads to ectopic silencing in cis [76-78]. Thus Xist is 
both necessary and sufficient for initiation of X inac-
tivation. 

Recruitment of the MSL complex to the X 
chromosome in D. melanogaster 

In D. melanogaster, the Male Specific Lethal (MSL) 
complex specifically binds to and upregulates tran-
scription from the X chromosome in XY males (re-
viewed in [79, 80]). Sex-specificity of the MSL complex 
is provided by the MSL2 protein, which is expressed 
only in male embryos [81]. MLS2 binds to and stabi-
lizes MSL1, and form a complex with MSL3, MLE 
RNA helicase (maleless), MOF histone acetyltrans-
ferase (males absent on the first), and one of two 
non-coding RNAs called roX1 and roX2 (RNA on the 
X) [82-85]. Ectopic insertion of roX RNA on autosomes 
recruits the MSL complex in cis to autosome, and in 
trans to the X chromosome [86-88].  

Chromatin immunoprecipitation coupled with 
microarray analysis (ChIP-chip) and high-throughput 
sequencing (ChIP-seq) of MSL subunits found ~200 
sites that direct initial recruitment of MSL to the X 
chromosome. These sites are called the chromatin 
entry sites (CES) or high affinity sites (HAS) (Figure 
4A) (reviewed in [89]). The sequence of roX RNAs is 
not complementary to CES sequences on the X. 
Therefore, rather than specifying recruitment by a 
RNA-DNA hybridization event, the function of roX 
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RNAs is likely structural [90-92]. In agreement with 
this, while the absence of both roX RNAs abolishes 
MSL localization to the X chromosome [93], overex-
pression of MSL1 and MSL2 can partially overcome 
the necessity for roX RNAs [94]. CESs contain a GA 
rich DNA sequence motif, named the MSL recogni-
tion element (MRE) (Figure 4B) [95-97]. Insertion of ~1 
kb DNA fragments containing wild type MRE motif 
into an autosome leads to ectopic recruitment of the 
MSL complex [95]. A recently identified zinc finger 
protein, CLAMP binds to MRE, and is required for 
recruitment of MSL complex to the X chromosome 
[98].  

Recently, comparative analysis of MSL binding 
in different Drosophila species provided additional 
insights into the mechanisms of recruitment. In sev-
eral Drosophila species, multiple chromosomal trans-
locations have formed neo-X and neo-autosomal re-
gions [99, 100]. Analysis of MSL binding sites in Dro-
sophila miranda suggests that while majority of newly 
formed CESs on the neo-X chromosome are due to 
mutations, about a third are formed by a mutant copy 
of a transposon carrying a MRE-like motif [101]. This 
study illustrates how transposons could provide a 
mechanism for coordinated recruitment of a chroma-
tin-modifying complex to a large chromosomal do-
main.  

Recruitment of the Dosage Compensation 
Complex to the X chromosome in C. elegans  

In C. elegans, the Dosage Compensation Complex 
(DCC) binds to and represses both X chromosomes in 
XX hermaphrodites by an average of two-fold (Figure 
4A) (reviewed in [102, 103]). At the core of the DCC is 
a specialized condensin complex. Condensins are 
evolutionarily conserved five-subunit protein com-
plexes that are essential for proper chromosome con-
densation and segregation (reviewed in [104]). In 
metazoans, two types of condensin complexes 
(named I and II) share two Structural Maintenance of 
Chromosomes (SMC) protein subunits, and a set of 
three different non-SMC subunits [105]. The con-
densin core of the DCC shares four out of five subu-
nits with condensin I, but includes an SMC variant 
called DPY-27 [106].  

DPY-27 interacts with at least five other 
non-condensin proteins including SDC-1, SDC-2, 
SDC-3, DPY-30 and DPY-21 (Figure 4B) [107-112]. 
Sex-specificity of the DCC is provided by SDC-2 pro-
tein, which is expressed only in XX hermaphrodites 
during early embryogenesis [113]. SDC-2, SDC-3 and 
DPY-30 are required for the recruitment of the con-

densin portion of the DCC to the X chromosome [112].  
C. elegans DCC first binds to a number of re-

cruitment sites on the X (rex), and then spreads onto 
the X chromosome [102, 106]. There are approxi-
mately 100 predicted rex sites along the length of the 
17.5 Mb X-chromosome. Initially, rex sites were iden-
tified by assaying the ability of DNA fragments, in the 
form of multi-copy extrachromosomal arrays to re-
cruit the DCC [114]. ChIP-chip analysis of DCC iden-
tified additional recruitment sites, and defined a 10 bp 
DNA sequence motif that is enriched at the rex sites 
(Figure 4B) [115]. This motif was later extended to 
12-bp and named the motif enriched on the X (MEX) 
[116, 117]. Although a 35 bp DNA fragment contain-
ing the motif as shown to recruit the DCC on ex-
trachromosomal arrays [118], it is still unknown if the 
same fragment could recruit as a single copy insertion 
on an autosome. Nevertheless, the extrachromosomal 
recruitment assays show that MEX is important, be-
cause mutation of the motif resulted in loss of DCC 
recruitment [117, 118]. It is not known if any of the 
DCC subunits bind directly to MEX. Therefore, it re-
mains unclear which proteins specify X-recruitment 
of the DCC via interaction with the MEX motif. 

Parallels in specification of X-recruitment in C. 
elegans and D. melanogaster  

DCC and MSL recruitment to the X chromosome 
show many parallels. The D. melanogaster MRE and C. 
elegans MEX motifs are not specific to the X chromo-
some and are only slightly enriched on their respec-
tive X chromosomes. D. melanogaster MRE is enriched 
on the X ~2-4-fold [95]. The C. elegans MEX is also ~2-4 
fold enriched and slightly more clustered on the X 
chromosome (Figure 4C) [115, 117]. Presence of many 
unbound motifs on the autosomes in both species 
suggests that although critical, DNA sequence motifs 
cannot fully explain the X specificity of dosage com-
pensation complex recruitment. 

Specification of binding sites is a general biolog-
ical problem common to all Transcription Factors 
(TFs). Many genome-wide binding studies show that 
TFs occupy only a small fraction of their potential 
targets. One contributor to specification of TF binding 
sites is the accessibility of the TF DNA sequence mo-
tifs to the respective TFs. TF binding motifs that are 
located at active promoters and enhancers that have 
lower nucleosome density are more likely to be bound 
[119-124]. In the case of D. melanogaster, it was shown 
that the MSL complex prefers more accessible binding 
sites for recruitment [125].  
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Figure 4. Recruitment of the dosage compensation complexes in mammals, flies and worms. A) In mouse, one of the homologs is inactivated (Xi) and the other 
remains active (Xa). X inactivation is initiated randomly by monoallelic expression of a long noncoding RNA named Xist from the X chromosome that is 
destined to be inactivated. Xist may interact and recruit multiple proteins to the X. In flies, male specific dosage compensation complex (MSL) is assembled 
with either of the two noncoding RNAs named roX1 and roX2 at their loci. MSL complex is recruited to the X chromosome at a number of chromatin entry 
sites (CES). In worms, the hermaphrodite specific dosage compensation complex (DCC) is initially recruited to the X chromosome at a number of 
recruitment sites on the X (rex). B) Left panel: The core of the worm DCC is a 5-subunit condensin complex that shares 4/5 subunits with the canonical 
condensin I. At least five additional proteins interact with the condensin core and have a role in dosage compensation. A 12-bp motif (MEX) is enriched at 
the DCC recruitment sites on the X, and is shown below. Right panel: Subunits of the MSL complex and the structural noncoding RNA (roX) is shown in 
grey. A DNA sequence motif called MRE is enriched under the MSL recruitment sites on the X chromosome. CLAMP is required for MSL recruitment to 
the X. C) Both MEX and MRE are enriched on their respective X chromosomes, but there are many motifs present on the autosomes that are not bound 
by the dosage compensation complexes. 
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Although chromatin accessibility could play a 
role in the choice of binding motifs within the X 
chromosome, it cannot be a large factor in 
X-specification. Accessible recruitment motifs are 
present on both X and autosomes, but the dosage 
compensation complexes do not bind autosomes. 
Therefore, X-specific recruitment should involve other 
mechanisms that act to increase the usage of the mo-
tifs on the X. These mechanisms may involve cooper-
ative recruitment by long-range interactions over long 
distance, or by increased concentration of the dosage 
compensation complexes on the X chromosome due 
to spreading, as discussed below. 

Common themes: Dosage compensation 
complex spreading on the X chromosome 

After X-specific recruitment, dosage compensa-
tion complexes spread in cis along the X chromosome. 
This recruitment-and-spreading type of mechanism 
may have evolved to regulate genes that translocate to 
the X chromosome. Spreading is also seen for many 
chromatin proteins involved in domain-wide gene 
regulation, such as HP1, Sir complex, and Polycomb 
complexes (reviewed in [126]).  

Xist spreading on the X chromosome 
After initiation of X chromosome inactivation, 

Xist and its associated proteins, including YY1 tran-
scription factor [70] and the Polycomb Repressive 
Complex 2 (PRC2) [127] spread along the X (Figure 
5A). Genomic techniques that mapped Xist localiza-
tion at high resolution suggested that spreading oc-
curs in two-steps: first to a smaller subset of Xist 
binding sites, and then to the remaining sites along 
the X (CHART-seq, [128], RAP-seq, [129]). The initial 
sites of spreading tend to be gene-rich regions and 
those that are physically close to the Xist locus. When 
Xist was inserted onto an autosome, autosomal 
spreading was not as high as on the X, suggesting that 
the X chromosome is more conducive to Xist spread-
ing [130, 131]. High-resolution mapping of long-range 
chromosomal interactions showed that the inactivated 
X chromosome conforms into a Xist dependent 
three-dimensional structure [132]. This structure may 
be a factor in Xist spreading and/or maintenance of 
Xist binding (Figure 5B) [128, 129].  

MSL spreading on the X chromosome in D. 
melanogaster 

In flies, after initial recruitment to the CES sites, 
MSL spreads along the X (Figure 5A). Ectopic re-
cruitment of MSL complex to an autosome lead to 
spreading [95], and an autosomal gene inserted onto 
the X chromosome recruited MSL [133], suggesting 
that MSL can spread onto autosomal genes. MSL 
spreads primarily to active gene bodies with a pref-
erential binding at the 3’ of transcribed regions (Fig-
ure 5C). MSL binding at active gene bodies is accom-
plished in part by the affinity of MSL3 to H3K36 tri-
methylated nucleosomes that are enriched at the 3’ of 
transcribed regions [134, 135]. There may be two dif-
ferent modes of MSL binding, one at the recruitment 
sites and the other at the sites of spreading [136]. At 
the recruitment sites, MSL binds to DNA, and at gene 
bodies it binds to nucleosomes. The molecular mech-
anism by which MSL spreads from the recruitment 
sites to active gene bodies remains unclear.  

DCC spreading on the X chromosome in C. 
elegans 

In worms, after initial recruitment to rex sites, the 
DCC spreads along the X chromosome. Similar to 
MSL complex spreading in flies, DCC spreading is not 
X-sequence specific. DCC was shown to spread from 
the X chromosome into the autosomal region of an 
X;A fusion chromosome [116]. DCC spreads prefer-
entially to transcriptionally active promoters and pu-
tative enhancers (Figure 5C) [115, 116, 137]. Low lev-
els of DCC binding at active autosomal promoters 
was observed by ChIP-chip, suggesting that the DCC 
has some intrinsic affinity to active promoters re-
gardless of the chromosome context [117]. This in-
trinsic affinity must be low, as ChIP-chip and 
ChIP-seq analyses with higher detergent concentra-
tion do not show significant autosomal binding [115, 
116, 137]. Spreading may be a general feature of SMC 
containing protein complexes, as ectopic recruitment 
of yeast condensin lead to spreading to a nearby ac-
tive promoter [138]. In yeast, it was suggested that the 
cohesin complex spreads by being pushed along the 
chromatin by RNA Polymerase II [139, 140]. The mo-
lecular mechanism by which the DCC and yeast con-
densin spread is unknown. 
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Figure 5. Spreading of the dosage compensation complexes in mammals, flies and worms. A) In mammals, Xist spreads initially to a number of loci, and then 
spreads along the rest of the X chromosome, binding at genes that are silenced. In flies, after recruitment to the CES sites, MSL complex spreads onto the 
X chromosome, preferentially accumulating towards the 3’ end of transcribed regions of active genes. In worms, after recruitment to the rex sites, the DCC 
spreads onto the X chromosome, preferentially accumulating at a subset of active gene promoters and enhancers. B) In mammals, recent studies suggest 
that Xist spreading along the X chromosome may be aided by three-dimensional interactions between distant loci.  

 
C. elegans condensin II was found to bind chro-

mosomes in a manner similar to the DCC, showing 
ChIP-seq enrichment at a subset of active promoters 
and enhancers [137]. This may be a conserved prop-
erty of condensins because similar binding patterns 
were observed for condensins in yeast [138], chicken 
cells [141], fly tissue culture cells [142] ,and in mouse 
embryonic stem cells [143]. In vitro, condensins bind 
to both naked DNA and chromatin non-specifically 
[146, 147]. In vivo, condensin binding sites may be 
specified by specific recruitment and certain features 
of chromatin structure. Indeed, yeast condensin was 
shown to preferentially bind H2A and H2A.Z [144]. A 
role for H2A.Z in DCC binding was also proposed 
based the observation that DCC immunofluorescence 
signal diffused off of the X chromosome upon H2A.Z 

knockdown [145]. Not all DCC sites contain H2A.Z, 
thus specificity of binding to chromatin remains un-
clear. 

Common themes: Transcriptional regula-
tion by altering chromatin structure of the 
X chromosome 

Dosage compensation complex spreading leads 
to changes in X chromosome chromatin structure and 
transcription. In mammals, Xist spreading initiates X 
inactivation process, which involves compaction of 
the inactivated X chromosome into a cytogenetically 
observable Barr body. In flies and worms, X chromo-
some dosage compensation complexes regulate 
chromatin structure more slightly to “fine-tune” 
transcription.  



Journal of Genomics 2015, Vol. 3 

 
http://www.jgenomics.com 

11 

Regulation of mammalian X chromosome 
structure  

The process of X inactivation starts with Xist 
spreading, followed by gradual accumulation of het-
erochromatin-associated marks on the X chromosome 
(Figure 6). These include H3K27me3, H3K9me3, 
H4K20me3, macroH2A, and DNA methylation (re-
viewed in [80, 148]). This heterochromatin state 
maintains X inactivation, since Xist was shown to be 
important for initiation of silencing but not mainte-
nance [74, 76, 149, 150]. It is not clear how these het-
erochromatic histone modifications are targeted to the 
X chromosome. For H3K27me3, it is thought that 
PRC2 is recruited to the X by binding to the Xist RNA 
[127, 151]. Paradoxically, immunofluorescence analy-
sis of PRC2 and Xist do not show strong 
co-localization [152]. In addition, the presence of 
PRC2 and H3K27me3 does not explain all X inactiva-
tion [153, 154]. Given that additional histone marks, 
DNA modifications, and proteins such as HBiX1 and 
SMCHD1 are enriched on the X [155], it is possible 
that collective action of multiple repression mecha-
nisms are needed to inactivate the X chromosome.  

X inactivation does not silence all genes. In mice, 
~3% of alleles on the inactivated X chromosome show 
some level of transcription [156]. Escape from X inac-
tivation is more pervasive in humans, and was esti-
mated at ~15% [157]. The amount of escape per gene 
varies, as does the tissues in which escape occurs (re-
viewed in [158]). Proper expression of genes that es-

cape X inactivation must be important in XX females 
because XO females with Turner syndrome show 
numerous deleterious phenotypes. In addition, in-
creased expression of escaper genes might cause 
problems associated with Klinefelter syndrome (XXY) 
patients. It was proposed that genes escape X inacti-
vation by being outside the Xist domain [159]. A re-
cent study tested this hypothesis in mouse and 
showed that genes within the Xist domain can escape 
inactivation [160]. The presence of escaper genes 
within the Xist domain suggests that X inactivation 
might act on individual genes. In this case, enrich-
ment of heterochromatin marks on the inactivated X 
chromosome may be a consequence of having many 
genes being silenced on the X.  

Regulation of X chromosome structure by the 
MSL complex in D. melanogaster 

MSL complex includes the MOF acetyltransfer-
ase, which catalyzes and increases the level of 
H4K16ac on the male X chromosome (Figure 6) [85, 
161, 162]. MOF is present in both males and females, 
and has a general role in gene regulation ge-
nome-wide [163]. Within the MSL complex, MOF is 
targeted to transcriptionally active gene bodies and 
acetylates H4K16 [164-166]. Since H4K16ac is enriched 
in active gene bodies, it was hypothesized that 
H4K16ac may loosen nucleosome compaction [167, 
168] and allow for more efficient transcriptional 
elongation [162].  

 

 
Figure 6. The effect of the dosage compensation complex on the X chromosome chromatin structure. In all three cases, a number of histone modifications are 
increased and some modifications are decreased on the X chromosome. While X inactivation silences most of X-linked genes, in C. elegans and D. mel-
anogaster, transcription from the X chromosome is regulated by an average of two-fold.  
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Genome-wide analysis of engaged RNA Pol II 
levels by global run-on assay (GRO-seq) [169], 
ChIP-seq analysis of initiating and elongating forms 
of RNA Pol II [170], and analysis of 5’ short RNA lev-
els (5’ CAP-seq, nascent-seq) [171] support the hy-
pothesis that MSL increases transcriptional elonga-
tion. Also supporting this hypothesis is the observa-
tion that an elongation factor mutation reduces 
MSL-dependent upregulation of a dosage compensa-
tion reporter gene [172]. Current models of increased 
elongation by MSL include faster clearing of nucleo-
somes due to H4K16ac (reviewed in [80]) and/or re-
duction in negative DNA supercoiling [174-176]. One 
ChIP-seq study suggested that the MSL complex me-
diates ~1.2 fold increase in RNA Pol II recruitment  to 
X-chromosome gene promoters in males [173]. A re-
cent study that collectively analyzed various ge-
nome-wide data suggested that the MSL complex 
mediates more efficient release of paused RNA Pol II 
in addition to increasing transcriptional elongation on 
the male X chromosome [171].  

MSL complex may also affect higher order 
chromosome structure, since MSL recruitment sites 
are closer to each other within the nucleus in males 
compared to females [177]. Although a previous study 
suggested that nuclear pore proteins may be involved 
in regulation of higher order structure of the male X 
chromosome [178], another study reported that nu-
clear pore components do not affect X chromosome 
structure as measured by the distance between MSL 
recruitment sites [177]. The function of MSL-mediated 
higher-order chromosome structure in fly dosage 
compensation remains unclear. 

Regulation of X chromosome structure and 
transcription by C. elegans DCC  

DCC regulates X chromosome structure, in par-
ticular by increasing H4K20me1 levels along the X 
[179, 180]. GRO-seq analysis upon DCC depletion 
indicate that the DCC reduces RNA Pol II levels at the 
X chromosome promoters [45]. It is not clear how 
H4K20me1 enrichment may reduce RNA Pol II re-
cruitment to X-linked promoters. DCC mediated 
H4K20me1 enrichment on the X leads to H4K16ac 
depletion [181]. It was hypothesized that H4K20me1 
and H4K16ac act antagonistically [182, 183], perhaps 
to regulate dynamics of RNA Pol II pausing [184]. 
However, this model of regulation does not fit the 
DCC, because there is no widespread RNA Pol II 
pausing in C. elegans, and transcriptional repression 
occurs at the level of Pol II recruitment to promoters 
[45].  

H4K20me1 is highly dynamic with respect to cell 
cycle (Reviewed in [185]). Immunofluorescence and 

western blot analyses in mammalian tissue culture 
cells showed that H4K20me1 levels increase during 
G2 through M phase, and then reduces dramatically 
after mitosis [186-190]. In contrast, H4K16ac is low 
during mitosis presumably because acetylation de-
creases H4-H2 interaction that mediates chromosome 
compaction [191]. Notably, increased H4K20me1 on 
mitotic chromosomes coincides with condensin 
binding. It is possible that the DCC mediates a “mito-
sis-like” chromosome structure on the C. elegans X 
chromosomes. While X-linked promoters were shown 
to support higher nucleosome occupancy, this is not 
specific to hermaphrodites [192]. Unfortunately, 
compaction of the X chromosomes has not been 
measured and compared to autosomes and mitotic 
chromosomes. It is also unclear how a mitosis-like 
chromosome structure causes a reduction in promoter 
recruitment of RNA Pol II.  

Fine-tuning transcription by the dosage 
compensation complexes in D. melano-
gaster and C. elegans 

Unlike X inactivation that silences majority of 
genes, fly and worm dosage compensation “fi-
ne-tune” transcription. The MSL complex activates 
and the DCC represses transcription from the X 
chromosomes by an average of two-fold. Comparing 
those X-linked genes whose expression decreases 
upon MSL knockdown to those genes that are bound 
by the MSL complex indicated a slight correlation 
between MSL binding and MSL-mediated change in 
transcription [166]. Approximately half of genes that 
were differentially expressed upon MSL knockdown 
were actually bound by the MSL complex [163]. The 
overall transcriptional effect of MLS2 and MOF 
knockdown in S2 cells was found to be on average 
~1.35 fold [6, 193]. However, transcriptional changes 
upon knockdown experiments should be examined 
carefully; since ~16% of all genes are on the X chro-
mosome, and misregulating X expression could have 
considerable indirect effects.  

In C. elegans, expression analysis in hypomorphic 
mutants and upon RNAi depletion of sdc-2 and dpy-27 
indicated a lack of correlation between DCC binding 
and DCC-mediated transcriptional repression [117]. 
The DCC binds to ~75% of expressed genes on the X 
chromosome [115, 116, 137]. Only half of the DCC 
bound genes are misregulated upon DCC knock-
down, and half of misregulated genes are bound by 
the DCC. Although there was an average of two-fold 
upregulation across the X chromosome upon DCC 
depletion, the range of regulation was 1.5 up to 10 
fold [117]. Since the X chromosome contains ~15% of 
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all coding genes, secondary effects are likely to be 
confounding. 

Unlike the MSL complex in flies, the DCC 
knockdown in worms caused widespread effects on 
autosomal transcription [117]. With respect to abso-
lute number, microarray experiments revealed that 
both SDC-2 and DPY-27 knockdown affected more 
autosomal genes compared to X-linked genes. In con-
trast, the effect of MSL1 knockdown was mostly re-
stricted to the X chromosome [163]. In addition, while 
knockdown of MSL complex caused an approxi-
mately equal number of autosomal genes to increase 
or decrease in transcription [163], the effect of DCC 
was asymmetrical. Approximately 4 times more au-
tosomal genes decreased in expression as opposed to 
increased [117]. The molecular mechanisms of such 
genome-wide effect by the DCC remain unclear (re-
viewed in [194]). 

Dosage Compensation and Development 
Mechanisms that link dosage compensation to 
sex determination  

In flies and worms, dosage compensation 
mechanisms are established during embryogenesis 
and are tightly linked to sex determination (Figure 
7A). In mice and humans, sex determination is gov-
erned by the SRY (sex-determining region Y) gene on 
the Y chromosome (reviewed in [195]). Expression of 
SRY leads to male development, while the absence of 
SRY leads to female development ([196, 197]). X inac-
tivation may be uncoupled from sex determination in 
mammals, as expression of SRY in XX mice caused 
male development in the presence of X inactivation 
[198].  

 
 

 
Figure 7. The link between dosage compensation and development. A) Dosage compensation is integrated into the transcriptional networks that are required 
for proper development. In worms and flies, sex determination pathways control sex-specific recruitment of the dosage compensation complexes to the 
X chromosome. B) Recent studies suggest that transcriptional pathways that promote multipotency repress X inactivation, which promotes differentia-
tion. 
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In contrast, dosage compensation depends on 
sex determination in C. elegans and D. melanogaster. In 
D. melanogaster, sex is determined by the sex lethal 
gene (Sxl) (reviewed in [199]). Sxl is transcribed in 
males, but contains a terminator in one exon. In fe-
males, this exon is spliced out, allowing for translation 
of a functional protein, SXL, which acts to repress 
MSL2 [200-203]. In males, the absence of SXL allows 
MSL2 expression, and thereby triggers dosage com-
pensation [81]. Therefore, in D. melanogaster, sex de-
termination pathway limits X chromosome dosage 
compensation to males. 

In C. elegans, sex is determined by xol-1, a gene 
that promotes male development [204, 205]. A num-
ber of X-linked and autosomal genes [206-208] battle 
over xol-1 expression ([209, 210]). In males, XOL-1 
represses sdc-2, which is required for both hermaph-
rodite development and recruitment of the DCC to the 
X chromosomes [205]. In the absence of SDC-2 in 
males, DCC does not bind and repress the X chro-
mosome [113]. Therefore, in C. elegans the sex deter-
mination pathway limits dosage compensation to 
hermaphrodites.  

Role of Dosage Compensation in Development  
In C. elegans, D. melanogaster, mice, and humans, 

failure to dosage compensate is lethal during devel-
opment. In mice, lack of X inactivation results in con-
tinual deterioration of the embryo and death around 
10 days post coitum [211]. Dosage compensation 
mechanisms are also essential in D. melanogaster and 
C. elegans development ([211, 212]). In C. elegans, 
dosage compensation mutant hermaphrodites die late 
in embryogenesis or as early larvae [213-215]. It is still 
unknown if there are specific developmental pro-
cesses that are significantly affected by a lack of dos-
age compensation. 

Recent studies in mammals and C. elegans sug-
gest that dosage compensation mechanisms are linked 
to differentiation (Figure 7B). In C. elegans, prolonged 
developmental plasticity due to mes-2 (PRC2) muta-
tion caused a delay in DCC localization to the X 
chromosome because of a delay in SDC-2 expression 
[216]. In mammals, several genes important for 
maintenance of stem cell state repress Xist expression 
(reviewed in [217, 218]). In return, X inactivation 
causes repression of genes required for totipotency 
[219]. How X chromosome dosage compensation af-
fects genome-wide transcriptional networks that reg-
ulate development and differentiation in the two 
sexes, remains an open question. 

Conclusion and Perspective 
Maintaining proper chromosome dosage is im-

portant for an organism’s fitness. In many animals, 
evolution of the sex chromosomes resulted in males 
and females to have different X chromosome dosage. 
In response to this, X chromosome dosage compensa-
tion mechanisms have evolved. Amongst the three 
well-studied model systems (flies, worms and mam-
mals), dosage compensation strategies are largely 
different. However, the molecular mechanisms of 
dosage compensation complexes do share many 
common characteristics that include specific recruit-
ment to the X chromosome, cis-spreading along the X, 
and regulation of chromatin structure and transcrip-
tion. It appears that in different organisms, different 
dosage compensation strategies coopted existing 
mechanisms of gene regulation to the X chromosome. 
Therefore, the mechanistic insights from dosage 
compensation studies will continue to contribute to 
our understanding of general mechanisms of tran-
scription regulation. 

In addition to mechanistic insights into gene 
regulation, dosage compensation studies are im-
portant because, X chromosome dosage compensation 
is an integral part of the transcriptional regulatory 
networks that ensure proper development and dif-
ferentiation in many species. Yet, numerous questions 
remain about the evolution and function of X chro-
mosome dosage compensation. For example, does 
dosage compensation have a role in sexual dimor-
phism? How does dosage compensation contribute to 
diversity of gene expression between individuals? 
What role does dosage compensation mechanisms 
play in evolution? Future research on X chromosome 
dosage compensation mechanisms in model and 
non-model organisms will help answer these im-
portant questions.  
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