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Abstract 

The Myanmar puddle frog, Phrynoglossus myanhessei, is a recently described, small dicroglossid frog 
distributed across central and southern Myanmar, typically inhabiting areas adjacent to small stagnant 
water bodies. With that new species description, rudimentary genome data from 30-fold Illumina 
sequencing were published as a novel approach in taxonomy to routinely publish genome data for new 
holotypes. While the data allowed to assemble the entire mitochondrial genome, it was not possible to 
extract basic population genetic data. Therefore, we present a de novo PacBio CLR genome assembly of 
P. myanhessei, to aid population genomic, evolutionary and taxonomic studies. The assembled genome has 
a size of 2.28 Gbp, with a scaffold N50 of 44 kbp and largest scaffold being 270 kbp long. BUSCO analysis 
indicates a completeness score of 49%, with 26.9% complete and 22.3% fragmented BUSCOs. 
Approximately 43% of the genome consists of repetitive elements and about 22,500 genes could be 
predicted. While not an optimal assembly, the new P. myanhessei genome is a valuable resource for 
follow-up studies and for closing the gap in amphibian genome representation. 
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Introduction 
In addition to classical taxonomy, biodiversity is 

increasingly studied and described by Next 
Generation Sequencing (NGS) data analyses. 
However, genomic representation of species remains 
uneven even among vertebrates with most genome 
sequences derived from mammals (~4460 genomes) 
and birds (~2300 genomes) (National Center for 
Biotechnology Information; last accessed 21st July 
2025; (1–3)). Amphibians are a rich tetrapod class with 
about 8900 species (4), representing a vertebrate class 
that includes the most threatened species, with nearly 
half of them being IUCN listed (5,6). As an ancient 
tetrapod lineage, they are globally distributed (except 
in the Arctic and Antarctica) and exhibit a unique 
diversity of traits, lifestyles, behaviours and 
reproductive strategies (7–12). Because of their rapid 
growth rate and high abundance, they serve as key 
components of food webs (13,14). These features make 

them attractive subjects for various scientific fields, 
including developmental biology, medical research, 
ecology and evolution (2,3). Despite their role of 
model organisms, they are still underrepresented in 
genomic studies utilizing NGS approaches (2,3). 

To date, many studies on phylogenetic and 
taxonomic relationships of amphibians rely on a 
limited number of mitochondrial and nuclear markers 
(15–18). Recent genome sequencing initiatives, like the 
Earth Bio Genome project (19), produce and analyse 
large-scale genomic datasets. These allow for the 
investigation of genetic structures at increasingly 
broader geographical scales and higher resolution, 
even in non-model organisms such as amphibians 
(20,21), but have not reached momentum in this field. 
In addition, the assembly of amphibian genomes can 
often be challenging due to their large size and high 
repeat content (3,12,22), which are part of the reason 
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for their underrepresentation among published 
genomes (1,2,23). Further limiting factors are the high 
costs and computational resources needed for 
analysing and assembling such genomes (24) as well 
as access to high-quality tissue for genome 
sequencing. 

Compared to 4,400 mammalian genomes 
available on NCBI (National Center for Biotechnology 
Information; last accessed 3rd July 2025) covering 
two-thirds of all known mammal species, over the 
past decade, only about 180 anuran genomes have 
been published. The majority of these are represented 
by the families Hylidae (16 genomes), Bufonidae (12 
genomes) and Ranidae (10 genomes). This stark 
discrepancy highlights the need for high-quality 
genome assemblies particularly from 
underrepresented amphibian lineages.  

The family Dicroglossidae, fork-tongued frogs, 
comprises a large group of frogs distributed from 
Sub-Saharan Africa through India to Southeast Asia, 
forming a significant component of local amphibian 
communities. It includes over 245 species (4), but 
genome assemblies are currently only available for 
four of them, three belonging to the subfamily 
Dicroglossinae (Hoplobatrachus occipitalis, Nanorana 
parkeri and Quasipaa spinosa) and one to the subfamily 
Occidozyginae. Within the latter, only one rough draft 
genome based on 30-fold Illumina sequences is 
available for Phrynoglossus myanhessei (Figure 1). This 
species has been recently described from Myanmar 
(25) belonging to the genus Phrynoglossus (Peters 
1867). Members of this genus are characterized by a 

fleshy and swollen tongue, the absence of vomerine 
teeth, slightly swollen digit tips, a distinct tympanum, 
skin covered by extensive mucous (“slimy touch”), a 
grey throat and both an axillar and inguinal amplexus 
(25,26). They are semiaquatic animals that tend to sit 
at the edge of small and shallow temporary water 
bodies (4,25). P. myanhessei remains poorly 
understood in terms of its natural history and ecology. 
Its known distribution is currently restricted to the 
central and southern regions of Myanmar, with no 
records from the Malay Peninsula (4).  

The available genomic data of P. myanhessei were 
published in 2021 as a genome resource (1.8 Gbp) 
with high fragmentation (N50 1.5 kbp) and low 
completeness (BUSCO: 8.5%). They were released 
alongside its taxonomic description to provide basic 
genomic information for a newly described holotype 
and to support future research (25). As proof of 
principle to promote type-specimen genomics (27), 
the mitochondrial genome and a few nuclear genes 
could be identified in the original publication. The 
30-fold Illumina paired-end coverage was an 
economic way to document its entire genome as a 
routine dataset for new species descriptions of new 
holotypes. However, its deeper information could 
only be extracted by mapping to a reference genome. 

To improve the genome quality of this holotype, 
we generated Pacific Biosciences (PacBio) long-reads 
and applied Illumina short-read error correction, 
resulting in an improved reference genome for this 
genus. 

 

 
Figure 1. Male holotype of Phrynoglossus myanhessei (SMF 103841) in life. Specimen stored in the collection at Senckenberg Museum Frankfurt, Germany. Photo by GK published 
in Köhler et al. (2021). 
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Materials and Methods 
Taxon sampling 

The sequenced male specimen of Phrynoglossus 
myanhessei (field number GK 6728; museum voucher 
SMF 103841) was collected by Gunther Köhler (GK) 
on 6 July 2017 at East Yangon University, Yangon 
Province, Myanmar (16.77737N, 96.24065E, WGS 
1984). The specimen is stored at the herpetological 
collection at the Senckenberg Museum, Frankfurt 
(SMF), Germany. 

Genomic library preparation 
The protocols for DNA extraction and 

preparation for Illumina short-read sequencing are 
described in detail in Köhler et al. (2021) [25]. The 
short reads were deposited by Köhler et al. (2021) [25] 
under the accession number SRR13288470.  

For PacBio consensus long read (CLR) 
sequencing genomic DNA was extracted from 2.5 mg 
tongue tissue following the standard phenol 
chloroform protocol (28). The obtained DNA was 
resuspended in TE buffer (10 mM Tris Cl, 0.1 mM 
EDTA) and stored at -20 °C. Quality of the extracted 
DNA was assessed using TapeStation 2200 from 
Agilent Technologies (29).  

Genome assembly and scaffolding 
Based on the raw sequencing data, a k-mer 

profile was generated using Jellyfish 2.3.0 (30) and 
visualized with GenomeScope 2.0 (31,32). The quality 
of the raw reads was assessed using FastQC 0.11.9 
(33). Adapter sequences and low-quality bases were 
removed using Trimmomatic 0.39 (34). 

The obtained long reads of SMF 103841 were 
assembled using Flye 2.9.2 with the pacbio-raw flag 
and an estimated genome size of 2.5 g (35). The 
assembly was polished with long reads using Racon 
1.5 (36) and deduplicated short reads using Pilon 1.24 
(37). To clean the short reads before polishing, they 
were mapped against the assembly using BWA 0.7.17 
(38) and Samtools 1.17 (39). Additionally, duplicates 
were marked using Picard 3.0 (40). To increase 
continuity, long-read scaffolding was performed with 
LongStitch 1.0.5 (41). To improve the correctness of 
the scaffolded assembly, gap closing was conducted 
with TGS-GapCloser 1.2.1 (42).  

Assembly quality assessment 
Contiguity and basic statistical data of the 

obtained assembly were assessed using QUAST 5.2.0 
(43). To check the assembly for contamination by 
other organisms, the contigs were aligned with the 
NCBI database using blastn algorithm (44). The 

results were visualized with Blobtools 1.1.1 using the 
“bestsum” algorithm (45). Contigs assigned to 
lineages other than vertebrates were checked for 
vertebrate BUSCOs using BUSCO 5.4.3 with the 
tetrapoda orthologous gene set (tetrapoda_odb10) 
(46). Contigs were maintained for the assembly when 
vertebrate BUSCOs were detected. To improve the 
correctness of the obtained assembly, contigs smaller 
than 500bp were removed. In addition, contigs were 
aligned with the NCBI database using blastn 
algorithm to remove contigs assigned to the 
mitochondrial genome (44). Furthermore, BUSCO 
5.4.3 was used to evaluate the completeness of the 
assembled genome using the vertebrate orthologous 
gene set (vertebrata_odb10) (46). 

Genome annotation 
Repeat annotation: Repeat annotation was 

performed using RepeatModeler 2.0.4 and 
RepeatMasker 4.1.5 (47,48). First, a species-specific 
repeat library was generated with RepeatModeler 
2.0.4 (using NCBI rmblast 2.14.0+ engine) including 
RECON 1.08 (49), RepeatScout 1.0.6 (50), LTRharvest 
(51) and LTR_retriever (52). This library was then 
combined with lineage-specific repeats from Dfam 
(53) using famdb.py to create a custom library. Repeat 
masking was performed with RepeatMasker using the 
combined library, applying both hard and soft 
masking. Finally, the repeat landscape was plotted 
based on Kimura 2-parameter divergence using 
RepeatMasker utilities.  

Gene annotation: Protein-coding gene models 
were predicted using GeMoMa 1.9 (54), which 
transfers gene annotations from multiple reference 
species to the target assembly via homology-based 
projection and intron position conservation. The 
genome was annotated with the GeMoMa pipeline, 
using annotations and genomes from seven 
amphibian references (Bufo bufo GCF_905171765.1, 
Bufo gargarizans GCF_014858855.1, Hyla sarda 
GCF_029499605.1, Nanorana parkeri GCF_000935625.1, 
Rana temporaria GCF_905171775.1, Xenopus laevis 
GCF_017654675.1 and Xenopus tropicalis 
GCF_000004195.4). GeMoMa was run with 
realignment enabled (GeMoMa.Score=ReAlign) to 
output predicted coding sequences and proteins. 
Statistics of the predicted proteins were summarized 
using AGAT (55). The final protein set was assessed 
for completeness using BUSCO 5.4.3 in “protein” 
mode with the vertebrate ortholog set 
(vertebrata_odb10) (46). 

Variant calling and demographic inference 
Short reads were mapped to the final assembly 

using BWA-MEM 0.7.17 (38) and duplicate reads were 
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removed using “MarkDuplicates” from Picard 3.0.0-1 
(40). Mapping quality was assessed with Qualimap 
2.2.1 (56).  

Samtools 1.19 was used to calculate site depth 
statistics (57). Variant calling was done using bcftools 
1.19 “mpileup” and “call -m” (39). Variants were 
filtered based on read depth (DP) using bcftools filter, 
retaining only those with DP between 30 and 75 to 
exclude low-confidence and highly covered sites. 
Genome-wide variant statistics were obtained using 
bcftools “stats”. Genome-wide heterozygosity (HE) 
was calculated from variant statistics as the 
proportion of heterozygous genotypes relative to total 
genotypes. The genome-wide genotype error rate was 
estimated as the proportion of non-reference 
homozygous calls relative to the total number of 
genotype sites obtained from the variant statistics to 
assess sequencing accuracy. We estimated effective 
population size (Ne) based on HE and mutation rate 
(μ) using the formula:  

Ne=HE / (4×μ) 

We based our mutation rate on synonymous 
substitution rates reported by Session et al. (2016) [58] 
for Xenopus laevis, who estimated an absolute 
substitution rate of approximately 3.0 × 10⁻⁹ 
substitutions per site per year, excluding CpG sites. 
Assuming a generation time of 2 years for X. laevis, 
this translates to a per-generation mutation rate of 
approximately 6.0 × 10⁻⁹ (0.6 × 10⁻⁸) substitutions per 
site per generation. However, because direct estimates 
for our study species are unavailable, and to account 
for variation in mutation rates among amphibians and 
vertebrates more broadly, we also considered a 
plausible range of 0.5–1.0 × 10⁻⁸ mutations per site per 
generation (59,60).  

Data availability 
The genome assembly generated during this 

project is accessible on GenBank (Bioproject 
PRJNA687006; Accession No. JBRATO000000000). 
Supplemental material available at Journal of 
Genomics online. 

Results 
Genome sequencing and assembly 

High quality genomic DNA with an average 
length of >10kbp could be extracted from tongue 
tissue (see Supplementary Figure 1). Since the sample 
has been stored in Ethanol for ~5 years, it was not 
suitable for RNA isolation and generation of a 
transcriptome.  

PacBio CLR sequencing produced 119 Gb of long 
read data with a mean read length of 8,047 bp, a total 

of 7,910,035 reads and a total length of 63,653,327,111 
bp. Illumina short-read sequences yielded two 
identical files of 211 Gb short-read data, each 
containing 308,075,534 reads with a total length of 
46,211,330 bp (Table 1).  

 
 

Table 1. Summary statistics of the raw (1) and the filtered and 
trimmed (2) Illumina short read data of Phrynoglossus myanhessei 
SMF 103841. 

(1) Statistics of raw short reads 
No. of short reads  308,075,534 
Average read length [bp] 150 
Total length [bp] 46,211,330,100 
Duplicates [%] 25.3 
GC [%] 42 
(2) Statistics of trimmed short reads 
 forward reversed 
No. of short reads  301,535,351 301,535,351 
Average read length [bp] 150 150 
Total length [bp] 45,227,130,304 45,226,425,599 
Duplicates [%] 24.9 24.3 
GC [%] 42 42 

 
The de novo assembly of Phrynoglossus myanhessei 

from PacBio and Illumina data resulted in a genome 
of 2.28 Gbp consisting of 70,197 scaffolds, with a 
scaffold of N50 of 44 Kbp and L50 of 16,441 bp (Table 
2). Estimated long-read and short-read coverage of 
the assembly were 14.6× and 13.3×, respectively. 

 

Table 2. Summary statistics of the Phrynoglossus myanhessei SMF 
103841 scaffold-level reference genome. Details on assembly 
statistics (1) and BUSCO analysis (2) are shown. 

(1) Statistics of long reads 
 contigs scaffolds 
Total no. 77,560 70,197 
Total length [bp] 2,407,983,688 2,279,771,963 
Largest contig [bp] 289,698 271,019 
N50 42,693 44,633 
L50 18,255 16,441 
GC [%] 42.72 42.7 
Ns per 100 kbp 0 185.5 
No. of total Ns 0 4,229,927 
Mean long read coverage [x] 14.6  
Mapped long reads [%] 92.1 
Mean short read coverage [x] 13.3 
Mapped short reads [%] 85.6 
(2) BUSCO completeness (n = 3354) 
 S: 26.6% D: 0.3% F: 22.3% M: 50.8% 

 
 
Blobtools classified 73% of scaffolds as Chordata, 

~1% as arthropoda and 7% unknown (see 
Supplementary Figure 2). BUSCO analysis of the 
cleaned assembly recovered a total of 49.2% BUSCOs, 
including 26.9% complete (Table 2).  
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Figure 2. Genome fraction of the Phrynoglossus myanhessei (SMF 103841) de novo assembly showing the proportion of repetitive elements (with the black area representing the 
non-repetitive portion of the genome).  

 
Genome annotation 

Repeat masking identified 42.9% of the de novo 
genome as repetitive elements (RE) (Figure 2). Of 
these, 5.23% were classified as retroelements, 
including 0.08% SINEs, 3.08% LINEs (1.39% LINE1, 
0.89% LINE2 and 0.8% LINE3), and 1.88% LTR 
elements. DNA transposons accounted for 11.23%, 
rolling-circle elements for 0.05%, small RNAs for 
0.03%, satellites for 0.13% and simple repeats for 
1.53%. Notably, 24.12% of the repetitive sequences 
could not be assigned to known classes.  

Genome annotation, combining de novo and 
homology-based repeat identification, resulted in 
22,508 genes, 29,402 mRNAs, and 175,281 coding 
sequences (CDSs). The annotated genes had an 
average length of 9,168 bp. Each CDS is composed of 
an average of 5.5 exons and 4.5 introns with mean 
exon and intron lengths of 210 bp and 1777 bp. 
BUSCO analysis of the predicted proteins identified 
31.0% complete proteins, of which 8.2% were 
duplicated. Additionally, 16.4% of the predicted 
proteins were fragmented and 52.6% were missing 
(total n=3352).  

Variant calling and demographic inference 
Variant Calling recovered about 74.6 million 

sites, of which 74.3 million were monomorphic and 
about 268,000 were biallelic variants. Genome-wide 
heterozygosity (Ho) was estimated at 0.358%. 

Genotype calls were highly accurate, with a low 
estimated genotype error rate of about 0.0019%.  

Assuming mutation rates ranging from 0.5 × 10⁻⁸ 
to 1.0 × 10⁻⁸ per site per generation, effective 
population size (Ne) was estimated to range from 
approximately 90,000 to 180,000 individuals, 
indicating substantial genetic diversity in the studied 
population.  

Discussion 
For more than 250 years, species descriptions in 

taxonomy have relied on physical 
specimens—specifically the holotype—which is 
collected, examined, described in published literature, 
and permanently deposited in natural history 
museum collections (27). Taxonomic comparisons, 
subspecies delimitations and assessments of closely 
related taxa require access to these name-bearing 
specimens, the holotype (27,61,62). This often 
necessitates either complicated loans of the specimen 
or travel to holding institution. However, over time, 
type specimens inevitably deteriorate: colors fade, 
anatomical features shrink, and fur or feathers may be 
lost (27).  

Genomic data provide a permanent and globally 
accessible complement to traditional type material. 
Generating 20-30x short-read coverage of a genome 
providing comprehensive data that is inexpensive in 
comparison to the logistics of field collection and 
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long-term specimen curation. However, genomic data 
requires decoding through mapping to a reference 
genome of a closely related species, which is often 
unavailable for non-model organisms, such as in our 
case Phrynoglossus myanhessei.  

For more in-depth taxonomic, population 
genomic, or evolutionary studies, a draft reference 
genome becomes essential. Such a genome enables the 
retrieval of protein-coding genes, estimation of 
heterozygosity, and reconstruction of demographic 
history (27). Additionally, the reference genome can 
serve as a scaffold to map short reads from closely 
related individuals, facilitating accurate species 
delimitation—one of the fundamental goals of 
taxonomy.  

Here, we present an improved genome assembly 
of Phrynoglossus myanhessei. However, the assembly 
remains non-contiguous, as measured by scaffold N50 
and L50 metrics. High heterozygosity complicates 
genome assembly, even with long-read platforms 
such as PacBio, due to the increased presence of 
alternative haplotypes. This often leads to fragmented 
assemblies with reduced contiguity, reflected in lower 
N50 values (63,64). 

Additional factors might likely contribute to the 
limited contiguity and completeness of the assembly, 
including only moderate DNA integrity (despite >15 
kb fragments), the reliance on PacBio CLR and 
short-read Illumina data, and the absence of RNA-seq 
or linked-read data. While high quality DNA with a 
length of >15kpb could be extracted from the material 
suitable for PacBio CLR sequencing, the material did 
not allow for additional RNA sequencing due to its 
nearly five years of ethanol preservation and frozen 
storage. The sequencing strategy of using PacBio CLR 
in combination with Illumina short-reads and the 
resulting read data are limiting read length and 
quality compared to high-quality assemblies that 
mainly rely on including transcriptome or linked-read 
technologies. The short-read Illumina data although 
having high read quality are insufficient in resolving 
repetitive regions and structural complexity and lead 
to fragmentation and gaps in the assembly (65).  

The relatively low BUSCO values (~50%) likely 
underestimates the true completeness of this novel 
genome assembly. BUSCO analysis was conducted 
using a general vertebrate database rather than one 
tailored to amphibians or anurans (66,67). This bias 
can lead to underestimating predicted gene or protein 
completeness. However, when compared with other 
amphibian genome assemblies generated using 
similar sequencing and analysis approaches, our 
results are consistent, typically showing ~20% lower 
completeness than highly scaffolded or 
chromosome-level assemblies (68–71). 

This reference bias also extends to repeat 
annotations: when homology-based repeat libraries 
are incomplete, true genes may be misclassified as 
repetitive elements, artificially increasing the 
proportion of “unknown” repeats (3,72). In our 
genome assembly, the total repeat content is slightly 
lower than that reported for other dicroglossid 
anurans (47–64%) yet remains well within the known 
range documented for anurans (23–82%) (12). In 
contrast, the initial draft assembly of P. myanhessei 
(GCA_022657655.1) showed a higher repeat content 
(47.65%), likely a consequence of the greater 
fragmentation of the assembly, which can lead to an 
overestimation of repetitive samples. 

Moreover, our study reveals that P. myanhessei 
exhibits relatively high heterozygosity and effective 
population size compared to other amphibians. 
Threatened species in particular often exhibit reduced 
heterozygosity, due to often small and fragmented 
populations and limited connectivity among them 
(73,74). Likewise, formerly widespread amphibians 
such as the boreal toad (Anaxyrus boreas) now display 
markedly lower heterozygosity and nucleotide 
diversity, likely reflecting historical bottleneck effects 
and recent population declines (75–77). In contrast, 
heterozygosity in P. myanhessei (~0.35%) is 
comparable to that of the African clawed frog 
(Xenopus tropicalis) (~0.3%), a widely distributed 
species without signs of demographic decline (78).  

The relatively high heterozygosity in P. 
myanhessei suggests a large and stable population. 
Field observations support this interpretation: the 
species is common across its distribution range, 
readily occupying both natural and anthropogenic 
habitats, and breeds opportunistically, with males 
calling from any suitable puddle (GK pers. comm.). 
Such ecological traits facilitate gene flow within a 
population and thus help maintain genetic diversity 
by mitigating the impacts of genetic drift and 
inbreeding (79–81).  

The genome annotation performed with 
GeMoMa predicted approximately 22,000 
protein-coding genes, which lies within the expected 
range for vertebrate genomes (82). Despite the 
fragmented nature of the assembly, this relatively 
high gene count underscores the value of 
homology-based gene prediction tools, which can 
recover conserved gene models by aligning the 
fragmented scaffolds to a reference genome of a 
related species (83). However, the high fragmentation 
still limits annotation accuracy and completeness, 
contributing to the relatively low BUSCO 
completeness score (~30%). This likely reflects 
methodological constraints, such as fragmentation of 
gene models, partial or misassembled exons, and 
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limitations of the available reference databases, rather 
than true biological absence. Consequently, many 
functional genes are likely present in the genome but 
were not detected or fully annotated by BUSCO. 

Despite these limitations, the assembly remains 
suitable as a reference for mapping-based analyses, 
including population genomics and variant calling. 
Assemblies of comparable quality have been 
successfully used in other anuran population genomic 
studies, such as the Phyllomedusa burmeisteri species 
group (71). The recovered protein-coding genes 
therefore remain valuable for exploring controversial 
phylogenetic relationships within the subfamily 
Occidozyginae. 
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