J Genomics 2018; 6:117-121. doi:10.7150/jgen.28335

Research Paper

Isolation and genomic characterization of six endophytic bacteria isolated from Saccharum sp (sugarcane): Insights into antibiotic, secondary metabolite and quorum sensing metabolism

Anutthaman Parthasarathy1#, Han Ming Gan2#, Narayan H. Wong1, Michael A. Savka1, KayLee K. Steiner1, Kurtis R. Henry1, André O. Hudson1✉

1. The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA
2. Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
# contributed equally to the work

Abstract

Six endophytic bacteria were isolated from Saccharum sp (sugarcane) grown in the parish of Westmoreland on the island of Jamaica located in the West Indies. Whole genome sequence and annotation of the six bacteria show that three were from the genus Pseudomonas and the other three were from the genera Pantoea, Pseudocitrobacter, and Enterobacter. A scan of each genome using the antibiotics and secondary metabolite analysis shell (antiSMASH4.0) webserver showed evidence that the bacteria were able to produce a variety of secondary metabolites. In addition, we were able to show that one of the organisms, Enterobacter sp RIT418 produces N-acyl-homoserine lactones (AHLs), which is indicative of cell-cell communication via quorum sensing (QS).

Keywords: sugarcane, endophytes, quorum sensing, secondary metabolism

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Parthasarathy A, Gan HM, Wong NH, Savka MA, Steiner KK, Henry KR, Hudson AO. Isolation and genomic characterization of six endophytic bacteria isolated from Saccharum sp (sugarcane): Insights into antibiotic, secondary metabolite and quorum sensing metabolism. J Genomics 2018; 6:117-121. doi:10.7150/jgen.28335. Available from http://www.jgenomics.com/v06p0117.htm